Amalg. Worksheet # 3 Solutions

Various Artists

April 23, 2013

1 Mike Hartglass

1.) Do the following formulae define inner products on the given vector spaces? (here
x = (21,72) and y = (y1,92) in C?

a.)V = C2, (T, y) = T1y1 + ToYo

Solution: This is not an inner product. It is easy to see directly that (z,y) need not

be equal to (y,z) (for example if z = (1,47) = y).

b.) V =C? (2,y) = 2171 + 2202

Solution: This is an inner product. The verifications are left to you
)V =C% (z,y) = 2172 + 2201

Solution: This is not an inner product. For example, if z = (1,0) then it is easy to
see that (x,z) = 0 even though z is nonzero.

d.) V =P*C), (p,q) = p(0)q(0) + p(v2)q(v/2) + p(m)q(r)

Solution: This is an inner product on V. The linearity properties are left for you
to verify. To show positive definiteness, notice that if (p,p,) = 0, then |p(0)> +
Ip(v/2)|> + |p(7)|? = 0. As each term is nonnegative, it follows that each term in the
sum is zero, i.e. p hs at least three roots. Since p is a polynomial of degree at most
2, it follows that p = 0.

(Remark: Do you see why this is not an inner product on P3(C)?

2.) Suppose u and v are nonzero vectors in an inner product space v.



a.) Define

= <U’w>wan Z2=v— (v, w)
"oy (w,w)

Show that v =y + z, y € span(w), and z is orthogonal to every vector in span(w).

The verification that v = y + z is trivial, and as &3 is a scalar, it follows that vy is

in the span of w (this expression is the orthogonal projection of v onto the span of
w). Finally, we see that

o) = ( (0= 200 ) ) = (0w = (25 ) =0

(w, w) (w, w)

Therefore, (z,aw) = (z,w) = 0 for all a € F.
b.) Draw a picture of this in R? for w = (1,0) and v = (1, 1).
Solution: This is up to you to do

3.) Suppose (eq,...,e,) is an orthonormal basis for a vector space V, and let x =
cie; + -+ + cpe,. Find a formula for the ¢;’s.

Solution: We see that
(,e;) = (cre1 + -+ cpen, ) = cr{er, ) + -+ + cplen, i)

Using orthonormality, ({e;,e;) = 01is i # j and (e;, e1) = 1), we obtain ¢; = (z, €;).
4.) a.) Suppose z and y are orthogonal vectors in an inner product space V. Prove
that

Iz +ylI> = [z + llyl®
Solution: We see that

lz+ylP=(z+y,z+y) =(z,z+y)+ (y,z+y)

= (z,z) + (z,y) + (Y, 2) + (,y) = |z + 0+ 0+ [ly]* = [|=]|* + [ly|]”

b.) Suppose x and y are vectors in an inner product space V. Prove that
|z + ay|| > ||z| for all @ € F if and only if (x,y) = 0.

Draw a picture of this in R2.

Solution: If x is orthogonal to y then x is orthogonal to ay for all a € F, so from part

a.),
lz + ayll* = l|=[I* + ay|* > ||=]*



so ||z + ay|| > ||z||. Conversely, suppose z is not orthogonal to y (so in particular
|ly|| # 0). Notice that we have the formula

Iz + ayll® = ll=[* + aly, ) + @z, y) + lal[lylI* = 2]* + 2R(a - (z,)) + lal*l|y]*

Therefore, we choose a € F such that a(z,y) is real and strictly negative (so 2R(a -

(,y)) = 2a(z,y)), and 0 < |a| < 2'?@"1@‘. Notice that the condition on a implies that

the terms 2a(z,y) and |a|?||y||* have opposite signs and |2a(z,y)| > |a|?|y||>. This
implies, from the above expression for ||z + ay||? that

Iz + ay|l* < [|]|*.

2 Peyam Tabrizian

Problem 1:

Suppose (,) is an inner product on W, and T': V' — W is injective. Show that:

(u,v) := (T'(u), T(v))

is an inner product on V.

Solution:

(a)

(u+w,v)= <T

And:

(au,v) = < T(au),T(v) >
= <al(u), T(v) >
= a<T(u),T) >

= a(u,v)



(c)
(u,u) =<T(u),T(u)> >0

Moreover, if (u,u) = 0, then < T'(u), T(u) >= 0, so T'(u) = 0, so u = 0 since T
is injective. 0

Problem 2:

Show that if vy,--- , v are nonzero orthogonal vectors, then (vy,--- ,vg) is linearly
independent.
Solution: Suppose:

ajvy + -+ agvr =0 (%)
Fix i =1,--- , k and take the inner product of (x) with v;:

<avr+ -+ apvg,v; >= 0
a <UL,V > A da; <v,v >+ Fap < vg,v;>= 0
a0+ +a <vi,v;>+--+a0= 0
a; <v;,v; >= 0
a; = 0
Where in the third equality, we used the fact that vy,--- , vy are orthogonal, and in

the last inequality, we used v; # 0, so < v;,v; >= ||v]|* > 0

So ay = --- = a = 0, since ¢ was arbitrary 0



Problem 3:
Suppose T' € L(V) is self-adjoint. Show that every eigenvalue of T' is real.

Solution: Suppose T'(v) = v, for v # 0.
Consider < T'(v),v >.
On the one hand:

<T(v),v >=< Iv,v >= X <v,v0>= \|v|
On the other hand:

<T(v),v >=<v,T*(v) >=< v, T(v) >=< v, \v >= X < v,0>= v’

(where we used the definition of 7% and the fact that 7% = T because T is self-adjoint)
Hence:

Aol = Xl

So , because ||v|| > 0, since v # 0

Problem 4:
Show that if 7" is normal, then Nul(T*) = Nul(T')

Solution: Suppose v € Nul(T'), then T'(v) =0, so T*T'(v) = T*(T'(v)) = T*(0) = 0.

Hence:

0= <0,v>
<T*Tv,v >
<TT*v,v > because T is normal, so T°T = TT*
= < T, T"v >
. 112
= [[T™]]

Hence ||T*v||* = 0, hence T*v = 0, so v € Nul(T*)



Hence | Nul(T) C Nul(T™) |.

In particular, notice that (77)*T* = TT* = T*T = T*(T*)*, so T* is normal, and
hence by what we’ve just shown:
Nul(T*) € Nul((T*)*) = Nul(T) |.

Hence Nul(T*) = Nul(T) O

Problem 5:

Suppose V' is finite-dimensional, T' € £(V'), and U is a subspace of V.
Show that U is invariant under 7' if and only if U~ is invariant under T*

Solution:

(=) Suppose v € Ut, want to show T*(v) € U~.

But for all v € U:

< T*v,u >=<v,T(u) >= 0, since T'(u) € U (since U is T-invariant)and v € U+

So T*v € U+ by definition of U+

(<) Ut invariant under T* implies (U4) is invariant under (7%)*.

However, (U+)t = U (here we use the fact that V is finite-dimensional) and
(1) =T
Hence we get: U is invariant under 7. O

Problem 6:

(if time permits) Suppose V is finite-dimensional and U is a subspace of V.
Show that V = U @ U+t

Solution: We’ll show!:

!This is enough, because if (u1,--- ,ux) is a basis of U and (wy,--- ,w;) is a basis of UL, you
can show using (a) and (b) that (uy,--- ,w;) is a basis of V, and hence V' = Span(uq,--- ,w;) =
Span(uy, -+ ,ux) + Span(wi,- -+ ,w;) = U + U+. And then use (a) and Prop 1.9



(a)
(b)

(a)

UnuUt = {0}
dim(V) = dim(U) + dim(U~)

Suppose u € U N U+
Then < u,u >= 0, because v € U and u € U*, by definition of U+.

Hence [|ul|®* =0, so u =0

Let (ug,- -+ ,uy) be an orthonormal basis of U?. Extend this to an orthonor-
mal basis (u, - ,ug, wy,- -+ ,w;) of V3.
Claim: (wy,--- ,w;) is a basis of U+

Then we're done, because dim(V) =k + [ = dim(U) + dim(U*1).

Proof: Linear independence follows from Problem 2 because wq,--- ,w; are
nonzero orthogonal vectors.

Let W = Span(wy, - -+ ,w;), we'll show W C U+ and U+ C W.

W C UL | If w e U, then u = ajuq + - - - + aguy, for scalars aq, - - -, ay (because

(w1, ,ux) is a basis of U).

But then for every ¢t =1,--- | I:

< Wi, u>= < W;,a1Uy + -+ apup >
a; < Wi, Uy >+ 00+ ap < Wi, Uk >

= a0+ 4 a0
0
Where we used the fact that (uy,--- ,w;) is orthogonal.

20rthogonal also works
3Such a basis exists by Corollary 6.25. Orthogonal also works



Hence each w; € U+, and hence W = Span(wy,--- ,w;) C U+,

ULCW|If v € U', then < v,u >= 0 for all v € U, and in particular,

<wv,u; >=0foralli=1,--- k.
Since (uq,--- ,w;) is a basis for V and v € V, v = ayuy + -+ - + aguy + bywy +
-« -+ byw; for scalars ay,--- ,¥b.

But then for all i =1,--- | k:

0= <wv,u; >

< aguy + -+ agug + bywy + -+ bwg, ug >

ap < Up, U > Fccdap < U, U > A4 ap < ug,u; > +bp < wp,up >+
a0+---+al+---+a,0+b0+---4+5b0

= a/i

Hence a; =0 for all ¢ = 1,--- | k, and hence:

v = ajui+- - Fapup+biwi+- - Fbw, = bywi+- - +bwy € Span(wy, -+ w) =W

Hence U+ C W O

Problem 7:

(if time permits) Let (vq,---,v,) be an orthonormal basis of V' and suppose the
matrix of '€ L£(V') is A. What is the matrix of 7* with respect to that same basis?

aix 0 Qip
Solution: Let A= | : = [aij],whereizl,--- ,n,j=1-,n.
Qp1 -+ Qpp
To find the matrix of T, as usual, for all j = 1,--- ,n, calculate 7*(v;) and then

express the result in terms of vy, -+, v,.

~—|—bl<wl,ui>



Before we do that, notice that if w = bjv; + - -- 4+ b,v,, then for all e =1,--- | n,

<w,v; > = < b+ -+ by, v >
b1<v1,vi>—i—---—|—b¢<vi,vi>+~--+bn<vn,vi>

Where we used the fact that v, --- , v, are orthonormal.

The point is that < w,v; > directly gives you the i-th coefficient in the expression of
w as a linear combo of vy, -+ ,v,.*

In particular, taking w = T%(v;), we get that < T*(v;),v; > gives you the i—th co-
efficient in the expression of 7%(v;) as a linear combo of vy, - -+ ,v,. In other words,
< T*(vj),v; > gives you the (i, j)—th entry of the matrix of 7% with respect to the
basis (v1,- -, v,)!

However:

<T*(vj),v; >= <wv;, T(v;) >
= <wj,av1 + -+ ajv; + -+ apv, > by definition of A, the matrix of T
= <j,a1,01 > + -+ < V5,050 >+ F <V, AUy >
= a1 <Vj,01 >+t ay; <, >t Ay < VU >
= a;0+---+a;1+---+a, 0 by orthonormality

= @

Hence, by the above, we have (A*);; = @;; = (A);i, that is:

ann v ap
A* =
A1 *+ Qpp
That is, A* is (in fact), the conjugate transpose of A. O

Note: In particular, if F = R, then A* = AT

4this is what makes orthonormality so awesome!



3 Daniel Sparks
3.1

m k
Let u = Z a;u; € U and w = Z bjw; € W be arbitrary. Then

i=1 j=1
m k m k
E a;U;, E bjwj = E a; \ U, E bjwj
=1 j=1 i=1 7j=1

= 0

There are other ways to do this, using common useful facts, but you’d have to prove
them if they weren’t presented in your book. For example U L (W; +---+W}) if and
only if U L W; for i = 1,--- ,n, whose proof is immediate. Also, Fv 1 Fw (where
v,w # 0, if and only if v L w. Combining these, and using induction, gives another
proof.

3.2

Let dimV = n. We have seen in a previous homework exercise that Null(P") &
Range(P") = V, we actually have that Null(P) @ Range(P) = V. This is because
P* = P for all kK > 1. [Induction: the base case k = 1 is clear by definition. Suppose
Pt = P, then P¥! = Po Pk = Po P = P? = P, completing the induction.] Let
{v1, -+ ,v.} be a basis for Range(P) and {v,,1, - ,v,} be a basis for Null(P). Take
f=A{v1, -+ ,v,} as basis for V.

Recall that P is self adjoint if and only if (Pv,w) = (v, Pw) for all v,w € V. We
observe that it is sufficient to check this on a basis:

Lemma: For any basis 8 = {vy,--- ,v,}, P is self adjoint if and only if (Pv;,v;) =
(v;, Puj;) for 1 <i,j <n.

Solution to exercise: Suppose that P is self adjoint, and consider v; with i < r
(i.e., v; € Range(P)) and v; with j > r (i.e. v; € Null(P)). Then

<Uiavj = <Pvi7vj> = <’UZ‘,PU]‘> = <Ui70> =0



That means that for any v;,v; with ¢« <r < j, we have v; L v;. Hence by Exercise 1,

Range(P) L Null(P).
Conversely, suppose Range(P) L Null(P). Let i,j be any two numbers such that
1 <1 <nand1<j <n. We consider four cases:
1.9 < r,j < r. Then both v;,v; € Range(P). Hence (Pv;,v;) = (v;,v;) =
<Ui> PU]>

2.1 < r,j > r. Then v; € Range(P) but v; € Null(P). Then (Pv;,v;) =
(vi,v5) = 0 by assumption. On the other hand 0 = (v;,0) = (v;, Pv;). So
<PUZ‘7’U]‘> =0= <UZ‘,PU]‘>.

3. ¢ >r,j <r. Then v; € Null(P) but v; € Range(P). Then, again, (Pv;,v;) =
<O,Uj> =0= <Ui,Uj> = <UZ',PU]‘>.

4.4 > r,j7 > r. Then v;,v; € Null(P). Then (Pv;,v;) = (0,v;) =0 = (v;,0) =
<UZ',PUJ'>.

In each case we see that (Pv;,v;) = (v;, Pv;). By the Lemma, P is self-adjoint. This
wraps it up unless the lemma has not yet been covered in class or the book. 0

Proof of Lemma: (My way:) The sesquilinear map V' x V. — C by (v,w)
(Pv,w) — (v, Pw) is determined by its values on the basis (v;,v;) for 1 <i,j <n.

(Peyam might prefer:) The “only if” is clear, as the definition of self adjoint is quan-
tified over arbitrary v, w, simply take v = v;, w = v;. For the other direction suppose

(Pvj,v;) — (v;, Pvj) = 0 for 1 <i,5 < n. Now let v = ZazvZ and w = Zb v;j be

J=1
arbitrary vectors in V. Then

(Pv,w) — (v, Puw) = < <§; alvz> Zb v]> - <iam,P (i ijj)>

— <Za,PU,,Zb vj> - <Za,vz,2b ij>

=1

_ (Zzab (Pus, ) : (Zzaib‘xwm)

i=1 j=1 i=1 j=1

— ZZ@Z bi((Pv;,v;) — (vs, Pvy))






