Amalg. Worksheet # 3 Solutions

Various Artists

April 23, 2013

1 Mike Hartglass

1.) Do the following formulae define inner products on the given vector spaces? (here $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{C}^2

a.) $V = \mathbb{C}^2, \langle x, y \rangle = x_1 y_1 + x_2 y_2$

Solution: This is not an inner product. It is easy to see directly that $\langle x, y \rangle$ need not be equal to $\overline{\langle y, x \rangle}$ (for example if x = (1, i) = y).

b.)
$$V = \mathbb{C}^2$$
, $\langle x, y \rangle = x_1 \overline{y_1} + x_2 \overline{y_2}$

Solution: This is an inner product. The verifications are left to you

c.)
$$V = \mathbb{C}^2$$
, $\langle x, y \rangle = x_1 \overline{y_2} + x_2 \overline{y_1}$

Solution: This is not an inner product. For example, if x = (1,0) then it is easy to see that $\langle x, x \rangle = 0$ even though x is nonzero.

d.)
$$V = \mathcal{P}^2(\mathbb{C}), \ \langle p, q \rangle = p(0)\overline{q(0)} + p(\sqrt{2})\overline{q(\sqrt{2})} + p(\pi)\overline{q(\pi)}$$

Solution: This is an inner product on V. The linearity properties are left for you to verify. To show positive definiteness, notice that if $\langle p, p, \rangle = 0$, then $|p(0)|^2 + |p(\sqrt{2})|^2 + |p(\pi)|^2 = 0$. As each term is nonnegative, it follows that each term in the sum is zero, i.e. p hs at least three roots. Since p is a polynomial of degree at most 2, it follows that p = 0.

(*Remark*: Do you see why this is *not* an inner product on $\mathcal{P}_3(\mathbb{C})$?

2.) Suppose u and v are nonzero vectors in an inner product space v.

a.) Define

$$y = \frac{\langle v, w \rangle}{\langle w, w \rangle} w$$
 and $z = v - \frac{\langle v, w \rangle}{\langle w, w \rangle} w$.

Show that v = y + z, $y \in \text{span}(w)$, and z is orthogonal to every vector in span(w).

The verification that v = y + z is trivial, and as $\frac{\langle v, w \rangle}{\langle w, w \rangle}$ is a scalar, it follows that y is in the span of w (this expression is the orthogonal projection of v onto the span of w). Finally, we see that

$$\langle z, w \rangle = \left\langle \left(v - \frac{\langle v, w \rangle}{\langle w, w \rangle} w \right), w \right\rangle = \langle v, w \rangle - \frac{\langle v, w \rangle}{\langle w, w \rangle} \cdot \langle w, w \rangle = 0.$$

Therefore, $\langle z, aw \rangle = \overline{\langle z, w \rangle} = 0$ for all $a \in \mathbb{F}$.

b.) Draw a picture of this in \mathbb{R}^2 for w = (1,0) and v = (1,1).

Solution: This is up to you to do

3.) Suppose $(e_1, ..., e_n)$ is an orthonormal basis for a vector space V, and let $x = c_1e_1 + \cdots + c_ne_n$. Find a formula for the c_i 's.

Solution: We see that

$$\langle x, e_i \rangle = \langle c_1 e_1 + \dots + c_n e_n, e_i \rangle = c_1 \langle e_1, e_i \rangle + \dots + c_n \langle e_n, e_i \rangle$$

Using orthonormality, $(\langle e_i, e_j \rangle = 0 \text{ is } i \neq j \text{ and } \langle e_i, e_1 \rangle = 1)$, we obtain $c_i = \langle x, e_i \rangle$. 4.) a.) Suppose x and y are orthogonal vectors in an inner product space V. Prove that

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Solution: We see that

$$\|x+y\|^{2} = \langle x+y, x+y \rangle = \langle x, x+y \rangle + \langle y, x+y \rangle$$
$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle = \|x\|^{2} + 0 + 0 + \|y\|^{2} = \|x\|^{2} + \|y\|^{2}$$

b.) Suppose x and y are vectors in an inner product space V. Prove that

 $||x + ay|| \ge ||x||$ for all $a \in \mathbb{F}$ if and only if $\langle x, y \rangle = 0$.

Draw a picture of this in \mathbb{R}^2 .

Solution: If x is orthogonal to y then x is orthogonal to ay for all $a \in \mathbb{F}$, so from part a.),

$$||x + ay||^{2} = ||x||^{2} + ||ay||^{2} \ge ||x||^{2}$$

so $||x + ay|| \ge ||x||$. Conversely, suppose x is not orthogonal to y (so in particular $||y|| \ne 0$). Notice that we have the formula

$$||x + ay||^{2} = ||x||^{2} + a\langle y, x\rangle + \overline{a}\langle x, y\rangle + |a|^{2}||y||^{2} = ||x||^{2} + 2\Re(a \cdot \langle x, y\rangle) + |a|^{2}||y||^{2}$$

Therefore, we choose $a \in \mathbb{F}$ such that $a\langle x, y \rangle$ is real and strictly negative (so $2\Re(a \cdot \langle x, y \rangle) = 2a\langle x, y \rangle$), and $0 < |a| < 2\frac{|\langle x, y \rangle|}{||y||^2}$. Notice that the condition on a implies that the terms $2a\langle x, y \rangle$ and $|a|^2 ||y||^2$ have opposite signs and $|2a\langle x, y \rangle| > |a|^2 ||y||^2$. This implies, from the above expression for $||x + ay||^2$ that

$$||x + ay||^2 < ||x||^2.$$

2 Peyam Tabrizian

Problem 1:

Suppose \langle , \rangle is an inner product on W, and $T: V \to W$ is injective. Show that:

$$(u,v) := \langle T(u), T(v) \rangle$$

is an inner product on V.

Solution:

(a)

$$(u+w,v) = \langle T(u+w), T(v) \rangle \\ = \langle T(u) + T(w), T(v) \rangle \\ = \langle T(u), T(v) \rangle + \langle T(w), T(v) \rangle \\ = (u,v) + (w,v)$$

And:

$$(au, v) = \langle T(au), T(v) \rangle$$

= $\langle aT(u), T(v) \rangle$
= $a \langle T(u), T(v) \rangle$
= $a(u, v)$

(b)

$$(v, u) = \langle T(v), T(u) \rangle$$

= $\overline{\langle T(u), T(v) \rangle}$
= $\overline{(u, v)}$

(c)

$$(u,u) = < T(u), T(u) > \ge 0$$

Moreover, if (u, u) = 0, then $\langle T(u), T(u) \rangle = 0$, so T(u) = 0, so u = 0 since T is injective.

Problem 2:

Show that if v_1, \dots, v_k are nonzero orthogonal vectors, then (v_1, \dots, v_k) is linearly independent.

Solution: Suppose:

$$a_1v_1 + \dots + a_kv_k = 0 \quad (*)$$

Fix $i = 1, \dots, k$ and take the inner product of (*) with v_i :

$$< a_1 v_1 + \dots + a_k v_k, v_i > = 0$$

$$a_1 < v_1, v_i > + \dots + a_i < v_i, v_i > + \dots + a_k < v_k, v_i > = 0$$

$$a_1 0 + \dots + a_i < v_i, v_i > + \dots + a_k 0 = 0$$

$$a_i < v_i, v_i > = 0$$

$$a_i = 0$$

Where in the third equality, we used the fact that v_1, \dots, v_k are orthogonal, and in the last inequality, we used $v_i \neq 0$, so $\langle v_i, v_i \rangle = ||v_i||^2 > 0$

So $a_1 = \cdots = a_k = 0$, since *i* was arbitrary

Problem 3:

Suppose $T \in \mathcal{L}(V)$ is self-adjoint. Show that every eigenvalue of T is real.

Solution: Suppose $T(v) = \lambda v$, for $v \neq 0$.

Consider < T(v), v >.

On the one hand:

$$\langle T(v), v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2$$

On the other hand:

$$< T(v), v > = < v, T^*(v) > = < v, T(v) > = < v, \lambda v > = \overline{\lambda} < v, v > = \overline{\lambda} ||v||^2$$

(where we used the definition of T^* and the fact that $T^* = T$ because T is self-adjoint) Hence:

$$\lambda \left\| v \right\|^2 = \overline{\lambda} \left\| v \right\|^2$$

So $\overline{\lambda = \overline{\lambda}}$, because ||v|| > 0, since $v \neq 0$

Problem 4:

Show that if T is normal, then $Nul(T^*) = Nul(T)$

Solution: Suppose $v \in Nul(T)$, then T(v) = 0, so $T^*T(v) = T^*(T(v)) = T^*(0) = 0$.

Hence:

$$0 = \langle 0, v \rangle$$

= $\langle T^*Tv, v \rangle$
= $\langle TT^*v, v \rangle$ because T is normal, so $T^*T = TT^*$
= $\langle T^*v, T^*v \rangle$
= $||T^*v||^2$

Hence $||T^*v||^2 = 0$, hence $T^*v = 0$, so $v \in Nul(T^*)$

Hence $Nul(T) \subseteq Nul(T^*)$.

In particular, notice that $(T^*)^*T^* = TT^* = T^*T = T^*(T^*)^*$, so T^* is normal, and hence by what we've just shown: $\boxed{Nul(T^*) \subseteq Nul((T^*)^*) = Nul(T)}.$

Hence $Nul(T^*) = Nul(T)$

Problem 5:

Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and U is a subspace of V. Show that U is invariant under T if and only if U^{\perp} is invariant under T^*

Solution:

 (\Rightarrow) Suppose $v \in U^{\perp}$, want to show $T^*(v) \in U^{\perp}$.

But for all $u \in U$: $< T^*v, u > = < v, T(u) > = 0$, since $T(u) \in U$ (since U is T-invariant)and $v \in U^{\perp}$ So $T^*v \in U^{\perp}$ by definition of U^{\perp}

(⇐) U^{\perp} invariant under T^* implies $(U^{\perp})^{\perp}$ is invariant under $(T^*)^*$.

However, $(U^{\perp})^{\perp} = U$ (here we use the fact that V is **finite-dimensional**) and $(T^*)^* = T$

Hence we get: U is invariant under T.

Problem 6:

(if time permits) Suppose V is finite-dimensional and U is a subspace of V. Show that $V = U \oplus U^{\perp}$

Solution: We'll show¹:

¹This is enough, because if (u_1, \dots, u_k) is a basis of U and (w_1, \dots, w_l) is a basis of U^{\perp} , you can show using (a) and (b) that (u_1, \dots, w_l) is a basis of V, and hence $V = Span(u_1, \dots, w_l) = Span(u_1, \dots, u_k) + Span(w_1, \dots, w_l) = U + U^{\perp}$. And then use (a) and Prop 1.9

- (a) $U \cap U^{\perp} = \{0\}$
- (b) $dim(V) = dim(U) + dim(U^{\perp})$
- (a) Suppose $u \in U \cap U^{\perp}$

Then $\langle u, u \rangle = 0$, because $u \in U$ and $u \in U^{\perp}$, by definition of U^{\perp} .

Hence $||u||^2 = 0$, so u = 0

(b) Let (u_1, \dots, u_k) be an **orthonormal** basis of U^2 . Extend this to an orthonormal basis $(u_1, \dots, u_k, w_1, \dots, w_l)$ of V^3 .

Claim: (w_1, \cdots, w_l) is a basis of U^{\perp}

Then we're done, because $dim(V) = k + l = dim(U) + dim(U^{\perp})$.

Proof: Linear independence follows from Problem 2 because w_1, \dots, w_l are nonzero orthogonal vectors.

Let $W = Span(w_1, \dots, w_l)$, we'll show $W \subseteq U^{\perp}$ and $U^{\perp} \subseteq W$.

 $W \subseteq U^{\perp}$ If $u \in U$, then $u = a_1u_1 + \cdots + a_ku_k$ for scalars a_1, \cdots, a_k (because (u_1, \cdots, u_k) is a basis of U).

But then for every $i = 1, \dots, l$:

$$< w_i, u > = < w_i, a_1 u_1 + \dots + a_k u_k >$$

= $a_1 < w_i, u_1 > + \dots + a_k < w_i, u_k >$
= $a_1 0 + \dots + a_k 0$
= 0

Where we used the fact that (u_1, \dots, w_l) is orthogonal.

²Orthogonal also works

³Such a basis exists by Corollary 6.25. Orthogonal also works

Hence each $w_i \in U^{\perp}$, and hence $W = Span(w_1, \cdots, w_l) \subseteq U^{\perp}$.

 $\underbrace{U^{\perp} \subseteq W}_{< v, u_i >= 0 \text{ for all } u \in U^{\perp}, \text{ then } < v, u >= 0 \text{ for all } u \in U, \text{ and in particular,} \\ < v, u_i >= 0 \text{ for all } i = 1, \cdots, k.$

Since (u_1, \dots, w_l) is a basis for V and $v \in V$, $v = a_1u_1 + \dots + a_ku_k + b_1w_1 + \dots + b_lw_l$ for scalars a_1, \dots, b_l .

But then for all $i = 1, \dots, k$:

$$\begin{array}{l} 0 = < v, u_i > \\ = < a_1 u_1 + \dots + a_k u_k + b_1 w_1 + \dots + b_l w_l, u_i > \\ = a_1 < u_1, u_i > + \dots + a_i < u_i, u_i > + \dots + a_k < u_k, u_i > + b_1 < w_1, u_i > + \dots + b_l < w_l, u_i > \\ = a_1 0 + \dots + a_i 1 + \dots + a_k 0 + b_1 0 + \dots + b_l 0 \\ = a_i \end{array}$$

Hence $a_i = 0$ for all $i = 1, \dots, k$, and hence:

$$v = a_1u_1 + \dots + a_ku_k + b_1w_1 + \dots + b_lw_l = b_1w_1 + \dots + b_lw_k \in Span(w_1, \dots, w_l) = W$$

Hence
$$U^{\perp} \subseteq W$$

Problem 7:

(if time permits) Let (v_1, \dots, v_n) be an orthonormal basis of V and suppose the matrix of $T \in \mathcal{L}(V)$ is A. What is the matrix of T^* with respect to that same basis?

Solution: Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}$$
, where $i = 1, \cdots, n, j = 1, \cdots, n$.

To find the matrix of T^* , as usual, for all $j = 1, \dots, n$, calculate $T^*(v_j)$ and then express the result in terms of v_1, \dots, v_n .

Before we do that, **notice** that if $w = b_1v_1 + \cdots + b_nv_n$, then for all $i = 1, \cdots, n$,

$$< w, v_i > = < b_1 v_1 + \dots + b_n v_n, v_i >$$

= $b_1 < v_1, v_i > + \dots + b_i < v_i, v_i > + \dots + b_n < v_n, v_i >$
= $b_1 0 + \dots + b_i 1 + \dots + b_n 0$
= b_i

Where we used the fact that v_1, \dots, v_n are orthonormal.

The point is that $\langle w, v_i \rangle$ directly gives you the *i*-th coefficient in the expression of w as a linear combo of v_1, \dots, v_n .⁴

In particular, taking $w = T^*(v_j)$, we get that $\langle T^*(v_j), v_i \rangle$ gives you the *i*-th coefficient in the expression of $T^*(v_j)$ as a linear combo of v_1, \dots, v_n . In other words, $\langle T^*(v_j), v_i \rangle$ gives you the (i, j)-th entry of the matrix of T^* with respect to the basis (v_1, \dots, v_n) !

However:

$$< T^*(v_j), v_i > = < v_j, T(v_i) >$$

$$= < v_j, a_{1i}v_1 + \dots + a_{ji}v_j + \dots + a_{ni}v_n >$$
 by definition of A , the matrix of T

$$= < v_j, a_{1i}v_1 > + \dots + < v_j, a_{ji}v_j > + \dots + < v_j, a_{ni}v_n >$$

$$= \overline{a_{1i}} < v_j, v_1 > + \dots + \overline{a_{ji}} < v_j, v_j > + \dots + \overline{a_{ni}} < v_j, v_n >$$

$$= \overline{a_{1i}} 0 + \dots + \overline{a_{ji}} 1 + \dots + \overline{a_{ni}} 0$$
 by orthonormality
$$= \overline{a_{ji}}$$

Hence, by the above, we have $(A^*)_{ij} = \overline{a_{ji}} = \overline{(A)_{ji}}$, that is:

$$A^* = \begin{bmatrix} \overline{a_{11}} & \cdots & \overline{a_{n1}} \\ \vdots & & \vdots \\ \overline{a_{1n}} & \cdots & \overline{a_{nn}} \end{bmatrix}$$

That is, A^* is (in fact), the **conjugate transpose** of A.

Note: In particular, if $\mathbb{F} = \mathbb{R}$, then $A^* = A^T$

⁴this is what makes orthonormality so awesome!

3 Daniel Sparks

3.1

Let
$$u = \sum_{i=1}^{m} a_i u_i \in U$$
 and $w = \sum_{j=1}^{k} b_j w_j \in W$ be arbitrary. Then

$$\left\langle \sum_{i=1}^{m} a_i u_i, \sum_{j=1}^{k} b_j w_j \right\rangle = \sum_{i=1}^{m} a_i \left\langle u_i, \sum_{j=1}^{k} b_j w_j \right\rangle$$

$$= \sum_{i=1}^{m} a_i \left(\sum_{j=1}^{k} \overline{b_j} \langle u_i, w_j \rangle \right)$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{k} (a_i \overline{b_j})(0)$$

$$= 0$$

There are other ways to do this, using common useful facts, but you'd have to prove them if they weren't presented in your book. For example $U \perp (W_1 + \cdots + W_k)$ if and only if $U \perp W_i$ for $i = 1, \cdots, n$, whose proof is immediate. Also, $\mathbf{F}v \perp \mathbf{F}w$ (where $v, w \neq 0$, if and only if $v \perp w$. Combining these, and using induction, gives another proof.

3.2

Let dim V = n. We have seen in a previous homework exercise that $\operatorname{Null}(P^n) \oplus \operatorname{Range}(P^n) = V$, we actually have that $\operatorname{Null}(P) \oplus \operatorname{Range}(P) = V$. This is because $P^k = P$ for all $k \geq 1$. [Induction: the base case k = 1 is clear by definition. Suppose $P^k = P$, then $P^{k+1} = P \circ P^k = P \circ P = P^2 = P$, completing the induction.] Let $\{v_1, \dots, v_r\}$ be a basis for $\operatorname{Range}(P)$ and $\{v_{r+1}, \dots, v_n\}$ be a basis for $\operatorname{Null}(P)$. Take $\beta = \{v_1, \dots, v_n\}$ as basis for V.

Recall that P is self adjoint if and only if $\langle Pv, w \rangle = \langle v, Pw \rangle$ for all $v, w \in V$. We observe that it is sufficient to check this on a basis:

Lemma: For any basis $\beta = \{v_1, \dots, v_n\}$, P is self adjoint if and only if $\langle Pv_i, v_j \rangle = \langle v_i, Pv_j \rangle$ for $1 \leq i, j \leq n$.

Solution to exercise: Suppose that P is self adjoint, and consider v_i with $i \leq r$ (i.e., $v_i \in \text{Range}(P)$) and v_j with j > r (i.e. $v_j \in \text{Null}(P)$). Then

$$\langle v_i, v_j = \langle Pv_i, v_j \rangle = \langle v_i, Pv_j \rangle = \langle v_i, 0 \rangle = 0$$

That means that for any v_i, v_j with $i \leq r < j$, we have $v_i \perp v_j$. Hence by Exercise 1, Range $(P) \perp \text{Null}(P)$.

Conversely, suppose $\operatorname{Range}(P) \perp \operatorname{Null}(P)$. Let i, j be any two numbers such that $1 \leq i \leq n$ and $1 \leq j \leq n$. We consider four cases:

- 1. $i \leq r, j \leq r$. Then both $v_i, v_j \in \text{Range}(P)$. Hence $\langle Pv_i, v_j \rangle = \langle v_i, v_j \rangle = \langle v_i, Pv_j \rangle$.
- 2. $i \leq r, j > r$. Then $v_i \in \text{Range}(P)$ but $v_j \in \text{Null}(P)$. Then $\langle Pv_i, v_j \rangle = \langle v_i, v_j \rangle = 0$ by assumption. On the other hand $0 = \langle v_i, 0 \rangle = \langle v_i, Pv_j \rangle$. So $\langle Pv_i, v_j \rangle = 0 = \langle v_i, Pv_j \rangle$.
- 3. $i > r, j \le r$. Then $v_i \in \text{Null}(P)$ but $v_j \in \text{Range}(P)$. Then, again, $\langle Pv_i, v_j \rangle = \langle 0, v_j \rangle = 0 = \langle v_i, v_j \rangle = \langle v_i, Pv_j \rangle$.
- 4. i > r, j > r. Then $v_i, v_j \in \text{Null}(P)$. Then $\langle Pv_i, v_j \rangle = \langle 0, v_j \rangle = 0 = \langle v_i, 0 \rangle = \langle v_i, Pv_j \rangle$.

In each case we see that $\langle Pv_i, v_j \rangle = \langle v_i, Pv_j \rangle$. By the Lemma, P is self-adjoint. This wraps it up unless the lemma has not yet been covered in class or the book.

Proof of Lemma: (My way:) The sesquilinear map $V \times V \to \mathbf{C}$ by $(v, w) \mapsto \langle Pv, w \rangle - \langle v, Pw \rangle$ is determined by its values on the basis (v_i, v_j) for $1 \leq i, j \leq n$.

(Peyam might prefer:) The "only if" is clear, as the definition of self adjoint is quantified over arbitrary v, w, simply take $v = v_i, w = v_j$. For the other direction, suppose $\langle Pv_i, v_j \rangle - \langle v_i, Pv_j \rangle = 0$ for $1 \le i, j \le n$. Now let $v = \sum_{i=1}^n a_i v_i$ and $w = \sum_{j=1}^n b_j v_j$ be arbitrary vectors in V. Then

arbitrary vectors in V. Then

$$\begin{aligned} \langle Pv, w \rangle - \langle v, Pw \rangle &= \left\langle P\left(\sum_{i=1}^{n} a_{i}v_{i}\right), \sum_{j=1}^{n} b_{j}v_{j} \right\rangle - \left\langle \sum_{i=1}^{n} a_{i}v_{i}, P\left(\sum_{j=1}^{n} b_{j}v_{j}\right) \right\rangle \\ &= \left\langle \sum_{i=1}^{n} a_{i}Pv_{i}, \sum_{j=1}^{n} b_{j}v_{j} \right\rangle - \left\langle \sum_{i=1}^{n} a_{i}v_{i}, \sum_{j=1}^{n} b_{j}Pv_{j} \right\rangle \\ &= \left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}\overline{b_{i}}\langle Pv_{i}, v_{j} \rangle\right) - \left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}\overline{b_{j}}\langle v_{i}, Pv_{j} \rangle\right) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i}\overline{b_{j}}(\langle Pv_{i}, v_{j} \rangle - \langle v_{i}, Pv_{j} \rangle) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{i}\overline{b_{j}})(0) \\ &= 0 \end{aligned}$$