Amalg. Worksheet \# 3 Solutions

Various Artists

April 23, 2013

1 Mike Hartglass

1.) Do the following formulae define inner products on the given vector spaces? (here $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \mathbb{C}^{2}
a.) $V=\mathbb{C}^{2},\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}$

Solution: This is not an inner product. It is easy to see directly that $\langle x, y\rangle$ need not be equal to $\overline{\langle y, x\rangle}$ (for example if $x=(1, i)=y$).
b.) $V=\mathbb{C}^{2},\langle x, y\rangle=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}$

Solution: This is an inner product. The verifications are left to you
c.) $V=\mathbb{C}^{2},\langle x, y\rangle=x_{1} \overline{y_{2}}+x_{2} \overline{y_{1}}$

Solution: This is not an inner product. For example, if $x=(1,0)$ then it is easy to see that $\langle x, x\rangle=0$ even though x is nonzero.
d.) $V=\mathcal{P}^{2}(\mathbb{C}),\langle p, q\rangle=p(0) \overline{q(0)}+p(\sqrt{2}) \overline{q(\sqrt{2})}+p(\pi) \overline{q(\pi)}$

Solution: This is an inner product on V. The linearity properties are left for you to verify. To show positive definiteness, notice that if $\langle p, p\rangle=$,0 , then $|p(0)|^{2}+$ $|p(\sqrt{2})|^{2}+|p(\pi)|^{2}=0$. As each term is nonnegative, it follows that each term in the sum is zero, i.e. p hs at least three roots. Since p is a polynomial of degree at most 2 , it follows that $p=0$.
(Remark: Do you see why this is not an inner product on $\mathcal{P}_{3}(\mathbb{C})$?
2.) Suppose u and v are nonzero vectors in an inner product space v.
a.) Define

$$
y=\frac{\langle v, w\rangle}{\langle w, w\rangle} w \text { and } z=v-\frac{\langle v, w\rangle}{\langle w, w\rangle} w .
$$

Show that $v=y+z, y \in \operatorname{span}(w)$, and z is orthogonal to every vector in $\operatorname{span}(w)$.
The verification that $v=y+z$ is trivial, and as $\frac{\langle v, w\rangle}{\langle w, w\rangle}$ is a scalar, it follows that y is in the span of w (this expression is the orthogonal projection of v onto the span of $w)$. Finally, we see that

$$
\langle z, w\rangle=\left\langle\left(v-\frac{\langle v, w\rangle}{\langle w, w\rangle} w\right), w\right\rangle=\langle v, w\rangle-\frac{\langle v, w\rangle}{\langle w, w\rangle} \cdot\langle w, w\rangle=0 .
$$

Therefore, $\langle z, a w\rangle=\overline{\langle } z, w\rangle=0$ for all $a \in \mathbb{F}$.
b.) Draw a picture of this in \mathbb{R}^{2} for $w=(1,0)$ and $v=(1,1)$.

Solution: This is up to you to do
3.) Suppose $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis for a vector space V, and let $x=$ $c_{1} e_{1}+\cdots+c_{n} e_{n}$. Find a formula for the c_{i} 's.

Solution: We see that

$$
\left\langle x, e_{i}\right\rangle=\left\langle c_{1} e_{1}+\cdots+c_{n} e_{n}, e_{i}\right\rangle=c_{1}\left\langle e_{1}, e_{i}\right\rangle+\cdots+c_{n}\left\langle e_{n}, e_{i}\right\rangle
$$

Using orthonormality, $\left(\left\langle e_{i}, e_{j}\right\rangle=0\right.$ is $i \neq j$ and $\left.\left\langle e_{i}, e_{1}\right\rangle=1\right)$, we obtain $c_{i}=\left\langle x, e_{i}\right\rangle$.
4.) a.) Suppose x and y are orthogonal vectors in an inner product space V. Prove that

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}
$$

Solution: We see that

$$
\begin{gathered}
\|x+y\|^{2}=\langle x+y, x+y\rangle=\langle x, x+y\rangle+\langle y, x+y\rangle \\
=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle=\|x\|^{2}+0+0+\|y\|^{2}=\|x\|^{2}+\|y\|^{2}
\end{gathered}
$$

b.) Suppose x and y are vectors in an inner product space V. Prove that

$$
\|x+a y\| \geq\|x\| \text { for all } a \in \mathbb{F} \text { if and only if }\langle x, y\rangle=0
$$

Draw a picture of this in \mathbb{R}^{2}.
Solution: If x is orthogonal to y then x is orthogonal to $a y$ for all $a \in \mathbb{F}$, so from part a.),

$$
\|x+a y\|^{2}=\|x\|^{2}+\|a y\|^{2} \geq\|x\|^{2}
$$

so $\|x+a y\| \geq\|x\|$. Conversely, suppose x is not orthogonal to y (so in particular $\|y\| \neq 0)$. Notice that we have the formula

$$
\|x+a y\|^{2}=\|x\|^{2}+a\langle y, x\rangle+\bar{a}\langle x, y\rangle+|a|^{2}\|y\|^{2}=\|x\|^{2}+2 \Re(a \cdot\langle x, y\rangle)+|a|^{2}\|y\|^{2}
$$

Therefore, we choose $a \in \mathbb{F}$ such that $a\langle x, y\rangle$ is real and strictly negative (so $2 \Re(a$. $\langle x, y\rangle)=2 a\langle x, y\rangle)$, and $0<|a|<2 \frac{|\langle x, y\rangle|}{\|y\|^{2}}$. Notice that the condition on a implies that the terms $2 a\langle x, y\rangle$ and $|a|^{2}\|y\|^{2}$ have opposite signs and $|2 a\langle x, y\rangle|>|a|^{2}\|y\|^{2}$. This implies, from the above expression for $\|x+a y\|^{2}$ that

$$
\|x+a y\|^{2}<\|x\|^{2} .
$$

2 Peyam Tabrizian

Problem 1:

Suppose \langle,$\rangle is an inner product on W$, and $T: V \rightarrow W$ is injective. Show that:

$$
(u, v):=\langle T(u), T(v)\rangle
$$

is an inner product on V.

Solution:

(a)

$$
\begin{aligned}
(u+w, v) & =<T(u+w), T(v)> \\
& =<T(u)+T(w), T(v)> \\
& =<T(u), T(v)>+<T(w), T(v)> \\
& =(u, v)+(w, v)
\end{aligned}
$$

And:

$$
\begin{aligned}
(a u, v) & =<T(a u), T(v)> \\
& =<a T(u), T(v)> \\
& =a<T(u), T(v)> \\
& =a(u, v)
\end{aligned}
$$

(b)

$$
\begin{aligned}
(v, u) & =<T(v), T(u)> \\
& =\overline{<T(u), T(v)>} \\
& =\overline{(u, v)}
\end{aligned}
$$

(c)

$$
(u, u)=<T(u), T(u)>\geq 0
$$

Moreover, if $(u, u)=0$, then $<T(u), T(u)>=0$, so $T(u)=0$, so $u=0$ since T is injective.

Problem 2:

Show that if v_{1}, \cdots, v_{k} are nonzero orthogonal vectors, then $\left(v_{1}, \cdots, v_{k}\right)$ is linearly independent.

Solution: Suppose:

$$
a_{1} v_{1}+\cdots+a_{k} v_{k}=0 \quad(*)
$$

Fix $i=1, \cdots, k$ and take the inner product of $(*)$ with v_{i} :

$$
\begin{aligned}
<a_{1} v_{1}+\cdots+a_{k} v_{k}, v_{i}> & 0 \\
a_{1}<v_{1}, v_{i}>+\cdots+a_{i}<v_{i}, v_{i}>+\cdots+a_{k}<v_{k}, v_{i}> & 0 \\
a_{1} 0+\cdots+a_{i}<v_{i}, v_{i}>+\cdots+a_{k} 0= & 0 \\
a_{i}<v_{i}, v_{i}> & 0 \\
a_{i}= & 0
\end{aligned}
$$

Where in the third equality, we used the fact that v_{1}, \cdots, v_{k} are orthogonal, and in the last inequality, we used $v_{i} \neq 0$, so $<v_{i}, v_{i}>=\left\|v_{i}\right\|^{2}>0$

So $a_{1}=\cdots=a_{k}=0$, since i was arbitrary

Problem 3:

Suppose $T \in \mathcal{L}(V)$ is self-adjoint. Show that every eigenvalue of T is real.

Solution: Suppose $T(v)=\lambda v$, for $v \neq 0$.
Consider $<T(v), v>$.
On the one hand:

$$
<T(v), v>=<\lambda v, v>=\lambda<v, v>=\lambda\|v\|^{2}
$$

On the other hand:

$$
<T(v), v>=<v, T^{*}(v)>=<v, T(v)>=<v, \lambda v>=\bar{\lambda}<v, v>=\bar{\lambda}\|v\|^{2}
$$

(where we used the definition of T^{*} and the fact that $T^{*}=T$ because T is self-adjoint) Hence:

$$
\lambda\|v\|^{2}=\bar{\lambda}\|v\|^{2}
$$

So $\lambda=\bar{\lambda}$, because $\|v\|>0$, since $v \neq 0$

Problem 4:

Show that if T is normal, then $\operatorname{Nul}\left(T^{*}\right)=\operatorname{Nul}(T)$

Solution: Suppose $v \in \operatorname{Nul}(T)$, then $T(v)=0$, so $T^{*} T(v)=T^{*}(T(v))=T^{*}(0)=0$.
Hence:

$$
\begin{aligned}
0 & =<0, v> \\
& =<T^{*} T v, v> \\
& =<T T^{*} v, v>\quad \text { because } T \text { is normal, so } T^{*} T=T T^{*} \\
& =<T^{*} v, T^{*} v> \\
& =\left\|T^{*} v\right\|^{2}
\end{aligned}
$$

Hence $\left\|T^{*} v\right\|^{2}=0$, hence $T^{*} v=0$, so $v \in \operatorname{Nul}\left(T^{*}\right)$

Hence $\operatorname{Nul}(T) \subseteq \operatorname{Nul}\left(T^{*}\right)$.
In particular, notice that $\left(T^{*}\right)^{*} T^{*}=T T^{*}=T^{*} T=T^{*}\left(T^{*}\right)^{*}$, so T^{*} is normal, and hence by what we've just shown:
$\operatorname{Nul}\left(T^{*}\right) \subseteq \operatorname{Nul}\left(\left(T^{*}\right)^{*}\right)=\operatorname{Nul}(T)$.
Hence $\operatorname{Nul}\left(T^{*}\right)=\operatorname{Nul}(T)$

Problem 5:

Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and U is a subspace of V.
Show that U is invariant under T if and only if U^{\perp} is invariant under T^{*}

Solution:

(\Rightarrow) Suppose $v \in U^{\perp}$, want to show $T^{*}(v) \in U^{\perp}$.
But for all $u \in U$:
$<T^{*} v, u>=<v, T(u)>=0$, since $T(u) \in U$ (since U is T-invariant) and $v \in U^{\perp}$ So $T^{*} v \in U^{\perp}$ by definition of U^{\perp}
$(\Leftarrow) U^{\perp}$ invariant under T^{*} implies $\left(U^{\perp}\right)^{\perp}$ is invariant under $\left(T^{*}\right)^{*}$.
However, $\left(U^{\perp}\right)^{\perp}=U$ (here we use the fact that V is finite-dimensional) and $\left(T^{*}\right)^{*}=T$

Hence we get: U is invariant under T.

Problem 6:

(if time permits) Suppose V is finite-dimensional and U is a subspace of V.
Show that $V=U \oplus U^{\perp}$

Solution: We'll show ${ }^{1}$:

[^0](a) $U \cap U^{\perp}=\{0\}$
(b) $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$
(a) Suppose $u \in U \cap U^{\perp}$

Then $\langle u, u\rangle=0$, because $u \in U$ and $u \in U^{\perp}$, by definition of U^{\perp}.
Hence $\|u\|^{2}=0$, so $u=0$
(b) Let $\left(u_{1}, \cdots, u_{k}\right)$ be an orthonormal basis of U^{2}. Extend this to an orthonormal basis $\left(u_{1}, \cdots, u_{k}, w_{1}, \cdots, w_{l}\right)$ of V^{3}.

Claim: $\left(w_{1}, \cdots, w_{l}\right)$ is a basis of U^{\perp}

Then we're done, because $\operatorname{dim}(V)=k+l=\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)$.

Proof: Linear independence follows from Problem 2 because w_{1}, \cdots, w_{l} are nonzero orthogonal vectors.

Let $W=\operatorname{Span}\left(w_{1}, \cdots, w_{l}\right)$, we'll show $W \subseteq U^{\perp}$ and $U^{\perp} \subseteq W$.
$W \subseteq U^{\perp}$ If $u \in U$, then $u=a_{1} u_{1}+\cdots+a_{k} u_{k}$ for scalars a_{1}, \cdots, a_{k} (because $\left(u_{1}, \cdots, u_{k}\right)$ is a basis of $\left.U\right)$.

But then for every $i=1, \cdots, l$:

$$
\begin{aligned}
<w_{i}, u> & =<w_{i}, a_{1} u_{1}+\cdots+a_{k} u_{k}> \\
& =a_{1}<w_{i}, u_{1}>+\cdots+a_{k}<w_{i}, u_{k}> \\
& =a_{1} 0+\cdots+a_{k} 0 \\
& =0
\end{aligned}
$$

Where we used the fact that $\left(u_{1}, \cdots, w_{l}\right)$ is orthogonal.

[^1]Hence each $w_{i} \in U^{\perp}$, and hence $W=\operatorname{Span}\left(w_{1}, \cdots, w_{l}\right) \subseteq U^{\perp}$.
$U^{\perp} \subseteq W$ If $v \in U^{\perp}$, then $<v, u>=0$ for all $u \in U$, and in particular,
$<v, u_{i}>=0$ for all $i=1, \cdots, k$.

Since $\left(u_{1}, \cdots, w_{l}\right)$ is a basis for V and $v \in V, v=a_{1} u_{1}+\cdots+a_{k} u_{k}+b_{1} w_{1}+$ $\cdots+b_{l} w_{l}$ for scalars a_{1}, \cdots, b_{l}.

But then for all $i=1, \cdots, k$:

$$
\begin{aligned}
0 & =<v, u_{i}> \\
& =<a_{1} u_{1}+\cdots+a_{k} u_{k}+b_{1} w_{1}+\cdots+b_{l} w_{l}, u_{i}> \\
& =a_{1}<u_{1}, u_{i}>+\cdots+a_{i}<u_{i}, u_{i}>+\cdots+a_{k}<u_{k}, u_{i}>+b_{1}<w_{1}, u_{i}>+\cdots+b_{l}<w_{l}, u_{i}> \\
& =a_{1} 0+\cdots+a_{i} 1+\cdots+a_{k} 0+b_{1} 0+\cdots+b_{l} 0 \\
& =a_{i}
\end{aligned}
$$

Hence $a_{i}=0$ for all $i=1, \cdots, k$, and hence:
$v=a_{1} u_{1}+\cdots+a_{k} u_{k}+b_{1} w_{1}+\cdots+b_{l} w_{l}=b_{1} w_{1}+\cdots+b_{l} w_{k} \in \operatorname{Span}\left(w_{1}, \cdots, w_{l}\right)=W$

Hence $U^{\perp} \subseteq W$

Problem 7:

(if time permits) Let $\left(v_{1}, \cdots, v_{n}\right)$ be an orthonormal basis of V and suppose the matrix of $T \in \mathcal{L}(V)$ is A. What is the matrix of T^{*} with respect to that same basis?

Solution: Let $A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]=\left[a_{i j}\right]$, where $i=1, \cdots, n, j=1, \cdots, n$.
To find the matrix of T^{*}, as usual, for all $j=1, \cdots, n$, calculate $T^{*}\left(v_{j}\right)$ and then express the result in terms of v_{1}, \cdots, v_{n}.

Before we do that, notice that if $w=b_{1} v_{1}+\cdots+b_{n} v_{n}$, then for all $i=1, \cdots, n$,

$$
\begin{aligned}
<w, v_{i}> & \left.=<b_{1} v_{1}+\cdots+b_{n} v_{n}, v_{i}\right\rangle \\
& =b_{1}<v_{1}, v_{i}>+\cdots+b_{i}<v_{i}, v_{i}>+\cdots+b_{n}<v_{n}, v_{i}> \\
& =b_{1} 0+\cdots+b_{i} 1+\cdots+b_{n} 0 \\
& =b_{i}
\end{aligned}
$$

Where we used the fact that v_{1}, \cdots, v_{n} are orthonormal.
The point is that $<w, v_{i}>$ directly gives you the i-th coefficient in the expression of w as a linear combo of $v_{1}, \cdots, v_{n} .{ }^{4}$

In particular, taking $w=T^{*}\left(v_{j}\right)$, we get that $<T^{*}\left(v_{j}\right), v_{i}>$ gives you the $i-$ th coefficient in the expression of $T^{*}\left(v_{j}\right)$ as a linear combo of v_{1}, \cdots, v_{n}. In other words, $<T^{*}\left(v_{j}\right), v_{i}>$ gives you the (i, j)-th entry of the matrix of T^{*} with respect to the basis $\left(v_{1}, \cdots, v_{n}\right)$!

However:

$$
\begin{aligned}
<T^{*}\left(v_{j}\right), v_{i}> & =<v_{j}, T\left(v_{i}\right)> \\
& =<v_{j}, a_{1 i} v_{1}+\cdots+a_{j i} v_{j}+\cdots+a_{n i} v_{n}>\quad \text { by definition of } A, \text { the matrix of } T \\
& =<v_{j}, a_{1 i} v_{1}>+\cdots+<v_{j}, a_{j i} v_{j}>+\cdots+<v_{j}, a_{n i} v_{n}> \\
& =\overline{a_{1 i}}<v_{j}, v_{1}>+\cdots+\overline{a_{j i}}<v_{j}, v_{j}>+\cdots+\overline{a_{n i}}<v_{j}, v_{n}> \\
& =\overline{a_{1 i}} 0+\cdots+\overline{a_{j i}} 1+\cdots+\overline{a_{n i}} 0 \quad \text { by orthonormality } \\
& =\overline{a_{j i}}
\end{aligned}
$$

Hence, by the above, we have $\left(A^{*}\right)_{i j}=\overline{a_{j i}}=\overline{(A)_{j i}}$, that is:

$$
A^{*}=\left[\begin{array}{ccc}
\overline{a_{11}} & \cdots & \overline{a_{n 1}} \\
\vdots & & \vdots \\
\overline{a_{1 n}} & \cdots & \overline{a_{n n}}
\end{array}\right]
$$

That is, A^{*} is (in fact), the conjugate transpose of A.
Note: In particular, if $\mathbb{F}=\mathbb{R}$, then $A^{*}=A^{T}$

[^2]
3 Daniel Sparks

3.1

Let $u=\sum_{i=1}^{m} a_{i} u_{i} \in U$ and $w=\sum_{j=1}^{k} b_{j} w_{j} \in W$ be arbitrary. Then

$$
\begin{aligned}
\left\langle\sum_{i=1}^{m} a_{i} u_{i}, \sum_{j=1}^{k} b_{j} w_{j}\right\rangle & =\sum_{i=1}^{m} a_{i}\left\langle u_{i}, \sum_{j=1}^{k} b_{j} w_{j}\right\rangle \\
& =\sum_{i=1}^{m} a_{i}\left(\sum_{j=1}^{k} \overline{b_{j}}\left\langle u_{i}, w_{j}\right\rangle\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{k}\left(a_{i} \overline{b_{j}}\right)(0) \\
& =0
\end{aligned}
$$

There are other ways to do this, using common useful facts, but you'd have to prove them if they weren't presented in your book. For example $U \perp\left(W_{1}+\cdots+W_{k}\right)$ if and only if $U \perp W_{i}$ for $i=1, \cdots, n$, whose proof is immediate. Also, $\mathbf{F} v \perp \mathbf{F} w$ (where $v, w \neq 0$, if and only if $v \perp w$. Combining these, and using induction, gives another proof.

3.2

Let $\operatorname{dim} V=n$. We have seen in a previous homework exercise that $\operatorname{Null}\left(P^{n}\right) \oplus$ Range $\left(P^{n}\right)=V$, we actually have that $\operatorname{Null}(P) \oplus \operatorname{Range}(P)=V$. This is because $P^{k}=P$ for all $k \geq 1$. [Induction: the base case $k=1$ is clear by definition. Suppose $P^{k}=P$, then $P^{k+1}=P \circ P^{k}=P \circ P=P^{2}=P$, completing the induction.] Let $\left\{v_{1}, \cdots, v_{r}\right\}$ be a basis for Range (P) and $\left\{v_{r+1}, \cdots, v_{n}\right\}$ be a basis for $\operatorname{Null}(P)$. Take $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ as basis for V.

Recall that P is self adjoint if and only if $\langle P v, w\rangle=\langle v, P w\rangle$ for all $v, w \in V$. We observe that it is sufficient to check this on a basis:

Lemma: For any basis $\beta=\left\{v_{1}, \cdots, v_{n}\right\}, P$ is self adjoint if and only if $\left\langle P v_{i}, v_{j}\right\rangle=$ $\left\langle v_{i}, P v_{j}\right\rangle$ for $1 \leq i, j \leq n$.

Solution to exercise: Suppose that P is self adjoint, and consider v_{i} with $i \leq r$ (i.e., $v_{i} \in \operatorname{Range}(P)$) and v_{j} with $j>r$ (i.e. $v_{j} \in \operatorname{Null}(P)$). Then

$$
\left\langle v_{i}, v_{j}=\left\langle P v_{i}, v_{j}\right\rangle=\left\langle v_{i}, P v_{j}\right\rangle=\left\langle v_{i}, 0\right\rangle=0\right.
$$

That means that for any v_{i}, v_{j} with $i \leq r<j$, we have $v_{i} \perp v_{j}$. Hence by Exercise 1, Range $(P) \perp \operatorname{Null}(P)$.

Conversely, suppose Range $(P) \perp \operatorname{Null}(P)$. Let i, j be any two numbers such that $1 \leq i \leq n$ and $1 \leq j \leq n$. We consider four cases:

1. $i \leq r, j \leq r$. Then both $v_{i}, v_{j} \in \operatorname{Range}(P)$. Hence $\left\langle P v_{i}, v_{j}\right\rangle=\left\langle v_{i}, v_{j}\right\rangle=$ $\left\langle v_{i}, P v_{j}\right\rangle$.
2. $i \leq r, j>r$. Then $v_{i} \in \operatorname{Range}(P)$ but $v_{j} \in \operatorname{Null}(P)$. Then $\left\langle P v_{i}, v_{j}\right\rangle=$ $\left\langle v_{i}, v_{j}\right\rangle=0$ by assumption. On the other hand $0=\left\langle v_{i}, 0\right\rangle=\left\langle v_{i}, P v_{j}\right\rangle$. So $\left\langle P v_{i}, v_{j}\right\rangle=0=\left\langle v_{i}, P v_{j}\right\rangle$.
3. $i>r, j \leq r$. Then $v_{i} \in \operatorname{Null}(P)$ but $v_{j} \in \operatorname{Range}(P)$. Then, again, $\left\langle P v_{i}, v_{j}\right\rangle=$ $\left\langle 0, v_{j}\right\rangle=0=\left\langle v_{i}, v_{j}\right\rangle=\left\langle v_{i}, P v_{j}\right\rangle$.
4. $i>r, j>r$. Then $v_{i}, v_{j} \in \operatorname{Null}(P)$. Then $\left\langle P v_{i}, v_{j}\right\rangle=\left\langle 0, v_{j}\right\rangle=0=\left\langle v_{i}, 0\right\rangle=$ $\left\langle v_{i}, P v_{j}\right\rangle$.
In each case we see that $\left\langle P v_{i}, v_{j}\right\rangle=\left\langle v_{i}, P v_{j}\right\rangle$. By the Lemma, P is self-adjoint. This wraps it up unless the lemma has not yet been covered in class or the book.

Proof of Lemma: (My way:) The sesquilinear map $V \times V \rightarrow \mathbf{C}$ by $(v, w) \mapsto$ $\langle P v, w\rangle-\langle v, P w\rangle$ is determined by its values on the basis $\left(v_{i}, v_{j}\right)$ for $1 \leq i, j \leq n$.
(Peyam might prefer:) The "only if" is clear, as the definition of self adjoint is quantified over arbitrary v, w, simply take $v=v_{i}, w=v_{j}$. For the other direction, suppose $\left\langle P v_{i}, v_{j}\right\rangle-\left\langle v_{i}, P v_{j}\right\rangle=0$ for $1 \leq i, j \leq n$. Now let $v=\sum_{i=1}^{n} a_{i} v_{i}$ and $w=\sum_{j=1}^{n} b_{j} v_{j}$ be arbitrary vectors in V. Then

$$
\begin{aligned}
\langle P v, w\rangle-\langle v, P w\rangle & =\left\langle P\left(\sum_{i=1}^{n} a_{i} v_{i}\right), \sum_{j=1}^{n} b_{j} v_{j}\right\rangle-\left\langle\sum_{i=1}^{n} a_{i} v_{i}, P\left(\sum_{j=1}^{n} b_{j} v_{j}\right)\right\rangle \\
& =\left\langle\sum_{i=1}^{n} a_{i} P v_{i}, \sum_{j=1}^{n} b_{j} v_{j}\right\rangle-\left\langle\sum_{i=1}^{n} a_{i} v_{i}, \sum_{j=1}^{n} b_{j} P v_{j}\right\rangle \\
& =\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{b_{i}}\left\langle P v_{i}, v_{j}\right\rangle\right)-\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \overline{\bar{b}_{j}}\left\langle v_{i}, P v_{j}\right\rangle\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} \overline{b_{j}}\left(\left\langle P v_{i}, v_{j}\right\rangle-\left\langle v_{i}, P v_{j}\right\rangle\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i} \overline{b_{j}}\right)(0) \\
& =0
\end{aligned}
$$

[^0]: ${ }^{1}$ This is enough, because if $\left(u_{1}, \cdots, u_{k}\right)$ is a basis of U and $\left(w_{1}, \cdots, w_{l}\right)$ is a basis of U^{\perp}, you can show using (a) and (b) that $\left(u_{1}, \cdots, w_{l}\right)$ is a basis of V, and hence $V=\operatorname{Span}\left(u_{1}, \cdots, w_{l}\right)=$ $\operatorname{Span}\left(u_{1}, \cdots, u_{k}\right)+\operatorname{Span}\left(w_{1}, \cdots, w_{l}\right)=U+U^{\perp}$. And then use (a) and Prop 1.9

[^1]: ${ }^{2}$ Orthogonal also works
 ${ }^{3}$ Such a basis exists by Corollary 6.25 . Orthogonal also works

[^2]: ${ }^{4}$ this is what makes orthonormality so awesome!

